87 research outputs found

    Robust interventions in network epidemiology

    Get PDF
    Which individual should we vaccinate to minimize the spread of a disease? Designing optimal interventions of this kind can be formalized as an optimization problem on networks, in which we have to select a budgeted number of dynamically important nodes to receive treatment that optimizes a dynamical outcome. Describing this optimization problem requires specifying the network, a model of the dynamics, and an objective for the outcome of the dynamics. In real-world contexts, these inputs are vulnerable to misspecification---the network and dynamics must be inferred from data, and the decision-maker must operationalize some (potentially abstract) goal into a mathematical objective function. Moreover, the tools to make reliable inferences---on the dynamical parameters, in particular---remain limited due to computational problems and issues of identifiability. Given these challenges, models thus remain more useful for building intuition than for designing actual interventions. This thesis seeks to elevate complex dynamical models from intuition-building tools to methods for the practical design of interventions. First, we circumvent the inference problem by searching for robust decisions that are insensitive to model misspecification.If these robust solutions work well across a broad range of structural and dynamic contexts, the issues associated with accurately specifying the problem inputs are largely moot. We explore the existence of these solutions across three facets of dynamic importance common in network epidemiology. Second, we introduce a method for analytically calculating the expected outcome of a spreading process under various interventions. Our method is based on message passing, a technique from statistical physics that has received attention in a variety of contexts, from epidemiology to statistical inference.We combine several facets of the message-passing literature for network epidemiology.Our method allows us to test general probabilistic, temporal intervention strategies (such as seeding or vaccination). Furthermore, the method works on arbitrary networks without requiring the network to be locally tree-like .This method has the potential to improve our ability to discriminate between possible intervention outcomes. Overall, our work builds intuition about the decision landscape of designing interventions in spreading dynamics. This work also suggests a way forward for probing the decision-making landscape of other intervention contexts. More broadly, we provide a framework for exploring the boundaries of designing robust interventions with complex systems modeling tools

    Next-generation optical access seamless Evolution: concluding results of the European FP7 project OASE

    Get PDF
    Increasing bandwidth demand drives the need for next-generation optical access (NGOA) networks that can meet future end-user service requirements. This paper gives an overview of NGOA solutions, the enabling optical access network technologies, architecture principles, and related economics and business models. NGOA requirements (including peak and sustainable data rate, reach, cost, node consolidation, and open access) are proposed, and the different solutions are compared against such requirements in different scenarios (in terms of population density and system migration). Unsurprisingly, it is found that different solutions are best suited for different scenarios. The conclusions drawn from such findings allow us to formulate recommendations in terms of technology, strategy, and policy. The paper is based on the main results of the European FP7 OASE Integrated Project that ran between January 1, 2010 and February 28, 2013

    Novel Cofacial Porphyrin-Based Homo- and Heterotrimetallic Complexes of Transition Metals

    Get PDF
    We present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterotrimetallic trisporphyin complexes. The protocol encompasses synthesising the first aryl-based, trans-o-phenylene trisporphyrin starting from pyrrole and benzaldehyde with an overall yield of 3.6 %. It also allows investigating the respective cis-isomer as the first conformationally restricted planar-chiral trisporphyrin. The free-base ligand was used in subsequent metalation reactions to afford the corresponding homotrimetallic Mn(III)-, Fe(III)-, Ni(II)-, Cu(II)-, Zn(II)- and Pd(II) complexes – additionally, a small adaptation of the protocol resulted in the defined Ni(II)Fe(III)Ni(II) complex in a total yield of 2.3 %. By monitoring Ni(II) insertion into the empty trimeric ligands, we affirmed that the outer porphyrin rings are filled before the internal ring. The molecular species were characterised by 1^{1}H NMR, UV-Vis, photoluminescence, IR, MS, CID, and high-resolution IMS measurements

    Objective Response to Radiation Therapy and Long-Term Survival of Patients with WHO Grade II Astrocytic Gliomas with Known LOH 1p/19q Status

    Get PDF
    Background:: WHO grade II gliomas are often approached by radiation therapy (RT). However, little is known about tumor response and its potential impact on long-term survival. Patients and Methods:: Patients subjected to RT were selected from the own database of WHO grade II gliomas diagnosed between 1991 and 2000. The volumetric tumor response after RT was assessed based on magnetic resonance imaging and graded according to standard criteria as complete, partial (PR, ≥ 50%), or minor (MR, 25% to < 50%). Results:: There were 24 astrocytomas and three oligoastrocytomas. 21 patients (78%) were dead at follow-up (mean survival 74 months). None of the patients had chemotherapy. Objective response occurred in 14 patients (52%, five PR and nine MR) but was not associated with overall survival. The vast majority of the tumors had no loss of heterozygosity (LOH) 1p and/or 19q (86%). Conclusion:: Approximately 50% of patients with astrocytic WHO grade II gliomas respond to RT despite the absence of LOH for 1p/19q. The potential predictive factors for response and the impact of response on overall survival remain unclea

    Pyrroloquinoline Quinone Aza-Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases**

    Get PDF
    Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone-dependent methanol dehydrogenases (MDH). Here we evaluate a literature-known pyrroloquinoline quinone (PQQ) and 1-aza-15-crown-5 based ligand platform as scaffold for Ca2+^{2+}, Ba2+^{2+}, La3+^{3+} and Lu3+^{3+} biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT-calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone-based radical

    Metal-to-Metal Distance Modulated Au(I)/Ru(II) Cyclophanyl Complexes : Cooperative Effects in Photoredox Catalysis

    Get PDF
    The modular synthesis of Au(I)/Ru(II) decorated mono- and heterobimetallic complexes with pi-conjugated [2.2]paracyclophane is described. [2.2]Paracyclophane serves as a rigid spacer which holds the metal centers in precise spatial orientations and allows metal-to-metal distance modulation. A broad set of architectural arrangements of pseudo -geminal, -ortho, -meta, and -para substitution patterns were employed. Metal-to-metal distance modulation of Au(I)/Ru(II) heterobimetallic complexes and the innate transannular pi-communication of the cyclophanyl scaffold provides a promising platform for the investigations of structure-activity relationship and cooperative effects. The Au(I)/Ru(II) heterobimetallic cyclophanyl complexes are stable, easily accessible, and exhibit promising catalytic activity in the visible-light promoted arylative Meyer-Schuster rearrangement.Peer reviewe

    On the Hydrogen Oxalate Binding Motifs onto Dinuclear Cu and Ag Metal Phosphine Complexes

    Get PDF
    We report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO2_{2})2_{2}H=HOx_{x}) anion attaches to dinuclear coinage metal phosphine complexes of the form [M1_{1}M2_{2}dcpm2_{2}(HOx)]+^{+} with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM]+^{+}. These structures are established by comparison of isomer-selective experimental vibrational band patterns displayed by the cryogenically cooled and N2_{2}-tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end-on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side-on docking). Within each class, there are additional isomeric variations according to the orientation of the OH group. This behavior indicates that HOx undergoes strong and directional coordination to [CuCu]+^{+} but adopts a more flexible coordination to [AgAg]+^{+}. Infrared spectra of the bare ions, fragmentation thresholds and ion mobility measurements are reported to explore the behaviors of the complexes at ambient temperature

    The complete inventory of receptors encoded by the rat natural killer cell gene complex

    Get PDF
    The natural killer cell gene complex (NKC) encodes receptors belonging to the C-type lectin superfamily expressed primarily by NK cells and other leukocytes. In the rat, the chromosomal region that starts with the Nkrp1a locus and ends with the Ly49i8 locus is predicted to contain 67 group V C-type lectin superfamily genes, making it one of the largest congregation of paralogous genes in vertebrates. Based on physical proximity and phylogenetic relationships between these genes, the rat NKC can be divided into four major parts. We have previously reported the cDNA cloning of the majority of the genes belonging to the centromeric Nkrp1/Clr cluster and the two telomeric groups, the Klre1–Klri2 and the Ly49 clusters. Here, we close the gap between the Nkrp1/Clr and the Klre1–Klri2 clusters by presenting the cDNA cloning and transcription patterns of eight genes spanning from Cd69 to Dectin1, including the novel Clec2m gene. The definition, organization, and evolution of the rat NKC are discussed

    Molecular pathophysiology of human MICU1 deficiency.

    Get PDF
    Funder: Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein‐Westfalen; Id: http://dx.doi.org/10.13039/501100009591Funder: Bundesministerium für Bildung und Forschung; Id: http://dx.doi.org/10.13039/501100002347AIMS: MICU1 encodes the gatekeeper of the mitochondrial Ca2+ uniporter, MICU1 and biallelic loss-of-function mutations cause a complex, neuromuscular disorder in children. Although the role of the protein is well understood, the precise molecular pathophysiology leading to this neuropaediatric phenotype has not been fully elucidated. Here we aimed to obtain novel insights into MICU1 pathophysiology. METHODS: Molecular genetic studies along with proteomic profiling, electron-, light- and Coherent anti-Stokes Raman scattering microscopy and immuno-based studies of protein abundances and Ca2+ transport studies were employed to examine the pathophysiology of MICU1 deficiency in humans. RESULTS: We describe two patients carrying MICU1 mutations, two nonsense (c.52C>T; p.(Arg18*) and c.553C>T; p.(Arg185*)) and an intragenic exon 2-deletion presenting with ataxia, developmental delay and early onset myopathy, clinodactyly, attention deficits, insomnia and impaired cognitive pain perception. Muscle biopsies revealed signs of dystrophy and neurogenic atrophy, severe mitochondrial perturbations, altered Golgi structure, vacuoles and altered lipid homeostasis. Comparative mitochondrial Ca2+ transport and proteomic studies on lymphoblastoid cells revealed that the [Ca2+ ] threshold and the cooperative activation of mitochondrial Ca2+ uptake were lost in MICU1-deficient cells and that 39 proteins were altered in abundance. Several of those proteins are linked to mitochondrial dysfunction and/or perturbed Ca2+ homeostasis, also impacting on regular cytoskeleton (affecting Spectrin) and Golgi architecture, as well as cellular survival mechanisms. CONCLUSIONS: Our findings (i) link dysregulation of mitochondrial Ca2+ uptake with muscle pathology (including perturbed lipid homeostasis and ER-Golgi morphology), (ii) support the concept of a functional interplay of ER-Golgi and mitochondria in lipid homeostasis and (iii) reveal the vulnerability of the cellular proteome as part of the MICU1-related pathophysiology
    corecore